EMAA: An Extendable Mobile Agent Architecture

Russell P. Lentini, Goutham P. Rao, Jon N. Thies, and Jennifer Kay

L ockheed Martin Advanced Technology L aboratories
1 Federal Street, A&E, 3W
Camden, NJ 08102
{rlentini, grao, jthies, jkay} @atl.Imco.com

Abstract

The Extendable Mobile Agent Architecture (EMAA) is a
new agent architecture specification that aids in the
development of an agent system. The architecture's
component design has layers of abstraction, providing a
generic system. EMAA provides a framework for
autonomous asynchronous mobile software agents to
migrate among computing nodes in a network and exploit
the resources at those nodes. A single implementation of
EMAA can provide a foundation for several different agent
applications.

Introduction

The Extendable Mobile Agent Architecture (EMAA) isa
new agent architecture specification that aids in the
development of an agent system. EMAA uses an object-
oriented design, but deviates from the traditional message-
passing paradigm among objects that are distributed
throughout a network. It provides a simple way for a
mobile agent to migrate from one computing node to
another and to use the resources at that node. EMAA does
not impose any restriction on the behavior of the agents,
thus allowing autonomous behavior. This paper explains
this new mobile agent architecture, and the extendable
nature of its components.

One of the major benefits of a distributed computing
environment is the ability to break problems up into
smaller sub-problems and solve those sub-problems in
paralel. EMAA exploits this characteristic by breaking an
agent’s high-level goal into tasks that can be executed in
paralel. Another characteristic of distributed computing
environments is that resources may be distributed among
different nodes in the network. The concept of breaking a
program up into sub-programs fits nicely with this structure
because a task that needs to exploit a resource can be
packaged into a separate, independent component.

The resources available at a particular node are
determined by the application requirements. In some situa-
tionsit is convenient to package the logic needed to access
these resources into a distinct component. In the EMAA
methodology, these service-providing components are
called servers.

EMAA is an architecture specification; its implemen-
tation is totally reusable and extendable. A single

implementation of EMAA may serve as a foundation for
several different agent systems.

In this paper we introduce the concept of taskable agents
and explain its robustness. This warrants an explanation of
the components needed to support such an agent. We first
give an overview of the architecture. We then concentrate
on the various components that make up the system and
their interactions.

The Extendable M abile Agent Architecture

The architecture has three major components: the agents,
servers and the dock. Agents perform the specialized, user-
defined work. Agents travel through the system via the
docks. The primary purpose of a dock is to serve as a
daemon process used for sending and receiving agents
between docks at other nodes. Furthermore, nodes that
offer specialized services to agents must do so viaa server.

Agents

The key functionality of a mobile-agent computing para-
digm is the ability to have a program execute at one node,
and then migrate to another node with its state preserved.
This program is called the agent.

EMAA views an agent as a vehicle to carry and execute
a number of programs, know as tasks, at different nodes.
The goal of the agent is to complete all of its tasks,
defining the concept of taskable agents. Since the agent isa
mobile program, one must consider both the task as well as
where that task is to be performed. EMAA supports the
mapping of atask to a node, allocating resources for the
task to be executed, through a table known as an itinerary.
An itinerary contains a mapping of which computing nodes
these tasks need to be performed on, and the program to be
executed in an event that this task failed to be performed
for whatever reason (the event handler).

There are a number of advantages from splitting an
agent’s goal into smaller sub-goals:

Parallelism: Multiple tasks may be executed in parallel,
perhaps at different nodes; a single agent can start a task
component on one node, and while that task isin progress,
migrate to another node and start another task.



Configurable agents. Agents can be configured at run-
time, without having to re-program a new agent for every
new goal.

Reusable components: If two agents have slightly
different goals, it may be possible to identify some
common subtasks. The programs needed to accomplish
these tasks may be re-used if they are properly created.

Servers

In many agent applications, one of the compelling reasons
that an agent will visit a computing node is to utilize the
resources at this node. There are three important points to
be noted here. First, to conserve bandwidth we want to
migrate as little code with an agent as possible. Second, the
code or logic needed to exploit the resources at the node
will usually be the same for all agents. Finally, it is
desirable to separate the implementation of these resources
from the implementation of the agent application.

It is beneficial to package the code needed to access
these resources into separate components known as servers.
Servers remain at nodes where the service is offered. It is
beneficial to have a common interface between the agents
and the servers that offer similar services at different
nodes, even though the servers may differ in their imple-
mentation. This keeps the agent machine-independent.

Dock

The most important features of the dock are to serve as a
daemon process to receive agents and as a placeholder for
other components. The dock consists of the following
components:

1. Communications fagade

2. Agent manager

3. Server manager

4. Event Manager

Communications Fagade: The communications facadeis
the daemon process itself and is meant to handle all
connections to any other computing node. It manages the
transmission of agents to and from the local node.

A well-known daemon process or component at a node
is needed to receive agents. It is a good idea to add
functionality to this same component to also send agents,
instead of the agents interacting directly with the
communications facade at the node the agent wants to
migrate to. There are two compelling reasons for this. First,
the communication software is packaged into one
component, separating it from the rest of the agent system.
Second, there is a more controlled mechanism for sending
and receiving agents. Such a mechanism allows for
optimization of network use in the presence of autonomous
components.

Agent Manager: The agent manager is responsible for
registering the agent and initializing it for execution. An
agent manager is used in agent collaboration and agent
validation for security reasons.

Server Manager: The server manager manages the
server components at a node. The server manager provides

a controlled mechanism to start and stop a service. The
server manager is a good place to incorporate an economy
model.

Event Manager: An event is defined as an
announcement that some component in the system has
reached an important state that may be of interest to other
components. Many times it is unknown if and when a
component will generate an event. For this reason, agents
and servers dependent on events must have some way of
“listening” for an event that may or may not happen. To
support this, an event management scheme where a
component can generate an event or wait for one is needed.

A mobile agent system by definition is dynamic in the
number and types of components resident at the dock at
any given time. This characteristic makes it difficult to pre-
program a component that will raise an event to
communicate directly with any other components which
may need to be notified when that event occurs. Even if
this could be done, it is more efficient to handle events
through a centralized event manager.

Dock Interaction

Component Loading: When an agent migrates to a node,
there may be some components of the agent already
present at the destination node. It is more efficient for an
agent to migrate with only the references to its components
and use those present at the destination. If any component
is not found at the node, then the agent manager can
request the component loader to contact the last node the
agent came from that is known to have that missing
component.

Resource Servers: It is useful to have some mechanism
to advertise a node’s resources to al other nodes. This
allows every agent to be aware of the resources available
on the network. An agent can determine what resources it
can use to achieve agoal at runtime. Therefore there is the
concept of inter-node resource sharing. EMAA specifies a
resource server for this purpose.

An Application to I nformation Discovery

Using the EMAA design, Advanced Technology Labora-
tories has developed a mobile-agent-based information
retrieval and dissemination application. The Domain
Adaptive Integration System (DAIS) is a DARPA funded
project with the general purpose of pushing and pulling
military intelligence information across |ow-bandwidth,
unreliable networks. These networks consist of heterogene-
ous sets of nodes containing numerous distributed
heterogeneous databases. The system has proven to be both
easy to develop and extremely robust, running on even
4.8Kbs half-duplex wireless networks which lose connec-
tion frequently.



