A Guide to Writing Feature News

A feature story is quite different from the standard news story. Quite simply, a feature story has a beginning, a middle, and an end. A standard “five people died in a fiery car crash last night on Route 58 . . .” is written in the standard inverse pyramid form.

A feature story is what you are used to seeing in magazines. Feature stories almost always include anecdotes, that is, short narratives of an occurrence.

Feature stories are found in magazines and in newspapers. Send a query letter before making a submission. Be aware that publications are always on the lookout for good feature items. Consider submitting an outline of the story or contact the editor and explain why you think you have a good idea for feature news.

THE STRUCTURE OF A FEATURE STORY

First, recognize how a feature story is constructed. Most, but not all, begin with an anecdote or quote.

When Tom Martin, the department head, realized that jobs would have to be cut, he made an unusual decision. He fired himself.

—or—

“I knew that one job would have to go,” recalls Tom Martin, the department head, “but I also knew that no one in the department had any savings or outside income to fall back on. Except for me.”

Most feature stories have a statement of theme that includes a sentence or two that tells what the story is all about. This statement of theme follows the opening quote or anecdote that has “hooked” the reader.

Tom Martin knew that he could get by on his savings, and knew that he didn’t want to go back to a job where he would have to fire people. He wanted to help people. So — four years ago at the age of 45 — he entered medical school.

So now we know what the story is about: a businessman who doesn’t like to fire people quit his job because he wanted to get into a helping profession. We also know that the rest of the story will deal with Tom’s experience at medical school, the difficulties, if any, cause by his age, and so on. Because the theme statement mentioned that he entered medical school four years ago, we assume he is graduating, and expect that to be mentioned within the body of the story.

Unlike a straight news story, which is meant to be cut from the bottom and therefore gives information of decreasing significance as the story continues, the feature story has a definite ending—often a quote or anecdote.

At his graduation, Dr. Tom Martin encountered a group of people he never expected to see standing in the reception line offering their congratulations.
Dr. Tom Martin shook hands with each of the 25 employees in his old department.

See how it works? There is a beginning, a middle, and an end. If you were the public relations director of the medical school, you probably would have had little difficulty placing the story with various publications. You might have written the story completely (if you knew that the intended publication would consider a story from you). Or you could have prepared an outline that might look some-thing like this:

I: Four years ago, Tom Martin quit his job as a department head instead of firing someone else to satisfy budget cuts.

 Quote from Martin: “I knew that no one else in the department had any savings or outside income. Except for me.”

II: Martin entered medical school at age 45. He wanted to be in a helping profession, a job where he . . .

The outline doesn’t have to be done in this form. Any sort of organized system will do, as long as it is constructed in the feature-story format. The following is an example of a published feature story along with explanations (in italics) of its structure.

The Robot Revolution Comes to WPI
by Carl Hausman
(Reprinted courtesy of the Worcester Telegram.)

Anecdotal opening. . . also, some description.

They don’t look a thing like Artoo Deetoo, or any other mechanical personality in Star Wars.

Scene is set quickly.

Full names of organizations are used on first reference;
easier-to-read abbreviations are substituted later.

Instead, the industrial robots at Worcester Polytechnic Institute’s Manufacturing Engineering Applications Center have an ungainly, ostrich-like quality. Their long-jointed arms (necks, perhaps) can reach forward and undertake a variety of tasks: assembly, welding, or operation of tools in stress failure tests. One recent demonstration at WPI involved a table-top robot pouring two cups of coffee—one black, one with sugar.

Now, the statement of theme; what the story is all about.

The robots are on the WPI campus in a novel cooperative venture between the college and the Emhart Corporation of Farmington, Connecticut, a diversified firm, which has become known for its application of emerging technology to manufacturing operations.

“Its Purpose” is the subheadline, added by the editor
Its Purpose

Staffed by WPI faculty and students along with Emhart engineers, the MEAC robotics laboratory is designed to develop applications of robots to specific Emhart plant operations, work out the problems and then get the system on to the Emhart line as quickly as possible. Meanwhile, WPI students get hands-on experience in the cutting edge of a new technology which, adherents claim, may be the key to revitalizing American industry.

First quote from expert; his full title is listed -- Joint venture is described.

“The situation is advantageous to everyone,” says Bennett E. Gordon, Jr. an associate professor of mechanical engineering at WPI and technical director of MEAC. “WPI gains access to expensive equipment it would be very difficult for us to obtain otherwise. Emhart benefits because they gain access to WPI facilities and faculty.”

Note transition: “Because of the ...” refers directly to previous paragraph.

Because of the Emhart-WPJ connection, Gordon says, “WPI is now one of the few institutions which offers hands-on experience in the field of industrial robotics.”

Now, the story is given a more general, national scope. Relating your local story to major issues gives it more weight.

Its Time has Come

Robots in the labor force do, indeed, seem to be a solution whose time has come. A widening variety of manufacturers are now buying robots at unprecedented rates, and there’s a growing attitude that American productivity is becoming a do-or-die issue.

A quote from another expert, directly commenting on theme of previous paragraph.

“I think industrial robotics is a great importance,” contends Arthur Gertenfeld, founder and co-director of MEAC and head of WPI’s management department. “The whole question of improving productivity, of which industrial robotics is a part, is one of the most important factors in turning around the U.S. economy.”

More major issues brought up. These show why the subject is important.

If there’s ever been a doubt to the effectiveness of industrial robots, it has long since been dispelled by the Japanese. Japan is the worldwide leader in the use of robots, and has succeeded in applications of the devices to many types of manufacture. And, as if to rub American noses in the whole productivity issue, they do it largely with American robots and strategies.
Japan’s Success

“They read our textbooks,” Gordon notes, “and much of their equipment was developed in the U.S.” Gordon, who recently returned from a trip to Japan which involved an international colloquium on robotics and a tour of automated Japanese factories, points out that robots alone don’t account for Japan’s success.

More of the professor’s qualifications are mentioned. Qualified interviewees give your story credence.

Because of the Emhart-WPJ connection, Gordon says, “WPI is now one of the few institutions which offers hands-on experience in the field of industrial robotics.”

Now, the story is given a more general, national scope. Relating your local story to major issues gives it more weight.

Direction question livens up the piece, smooths transition to next topic: What can a robot do?

What exactly can a robot do to increase productivity? For one thing, it can be an assembly line’s best worker, on its best day, 24 hours a day. It can handle routine assembly jobs without getting bored, or weld without being bothered by the heat and the flying sparks. And, in a very limited way, it can be taught to think.

Examples are important now. We’re back to local issues, the crux of the article.

National examples show why the college’s experiments are important.

Senses Defective Part

Some robots, for example, can sense a defective part with their claws and toss it aside. The most advanced form of robot is programmed by computer, and can be readily reprogrammed to perform a different task. WPI is currently working on a project where a computer-aided design system, known as CAD, can be utilized to load a program automatically into the robot’s memory. (Industrial robots are part of the computer-aided manufacture field, known as CAM; the common term used to designate automated design and manufacture ingrained into one system is CAD/CAM.)

Interesting details, not really crucial to the piece

However, use of an industrial robot involves more than unpacking the crate and plugging it in. ‘After you’ve bought a robot, you have gotten only halfway to the point of
having a functional system,” Gordon explains. You still have to develop the computer program and the accessories that go into the system. With Emhart, for instance, we have to make sure that, after the robots leave here, they will integrate with other equipment in the plant.”

Examples of projects at the college. Your stories should always include examples.

Testing Tools

An example of a WPI-Emhart robot project was a device to test Pop Riveter tools, which are made by Emhart. A robot called a PUMA 600 was programmed to operate the tool through thousands of cycles; this life-test will continue to the point of failure, which will be recorded and the robot automatically shut down.

Looking to the future is a common technique to begin wrapping up an article.

Future projects at the WPI robots lab include an arc-welding robot, scheduled to be delivered by the end of February. More advanced areas to be investigated by MEAC include voice input/output systems that will, in effect, allow the operator to talk to the robot and the robot to talk back. Gordon notes that in the future, an entire field of robotics will see an increasing emphasis on robots with advanced tactile devices, and even vision.

Philosophical issue also fits well into wrap-up

But where do humans fit into the scheme of future industry? “One of the myths about robots is that they will replace all humans,” Gordon says. Robots will certainly replace humans in hot, monotonous, dirty and dangerous jobs. But the result will be higher level jobs for workers, and an improvement in the quality of life.

Nice substantial quote for ending

Gerstenfeld concurs. “We really have no choice in the matter. It’s pretty much the same situation as the original industrial revolution—we can either adapt or go backwards. But rather than putting people out of work, we can make the nation more competitive and, at the same time, create more jobs.”

And that’s an example of how to use the feature structure. Feature stones don’t have to be as long as the preceding example nor do they have to adhere to the formula. Most do, though, so it’s probably a good idea to follow the set pattern at first.