Approval Form

Step 1 (Department)
- **Approved** 10/4/87
- **Not Approved**

Step 2 (Receipt)
- **SCC#** 97-88-25
- **Proposal Received** 11/8/87

Step 3 (School CC)
- **Reviewed** 1/30/89
- **Approved**

Step 4 (Academic Dean)
- **Recommend**
- **Not Recommend**
- **Conditionally Recommend**
- **Reviewed** 2/16/89

Step 5 (SCC)
- **Open Hearing** 3/14/89
- **Approved by Senate Curriculum Committee** 3/16/89

Step 6 (Senate)
- **Presented to Senate** 3/17/89
- **Approved**

Comments:

- **Curriculum Effect Statement:**
 - [Curriculum Effect Statement]

Signature, Dean of School:

Signature, SCC Chairperson:

Notification to Vice-President for Academic Affairs: 3/31/89

Signature, SCC Chairperson:
Step 6 (Senate)

Received 4/3/89

If no, reasons are as follows:

Student credit hours 3

Faculty load hours 3

Equalized credit hours 3

Official copy and approval sheet filed _______ Date _______

Signature, Vice-President for Academic Affairs

Registrar

Approved course description received _______ Date _______

Hegis Taxonomy and Course Number assigned 0704.564 Rec KRC 4/11/89

Signature, Registrar _______ Date _______

Notification forwarded:

☐ Senate Curriculum Committee Chairperson

☐ Department Chairperson(s)

☐ Academic Dean(s)

☐ Registrar

☐ Sponsor(s)
COURSE PROPOSAL

COMPILER DESIGN THEORY

1. Details

a. Course Title: Compiler Design Theory
b. Sponsor: K. Amer
c. Course Level: Graduate. Three credit hours.
d. Curricular Effect: Major requirement for the Master's Degree in Junior College Teaching (Computer Science).
e. Prerequisite: Data Structures and Programming languages.
f. One section every academic year will be offered.
g. There is an adequate number of faculty members who are well prepared to teach this course. Computer resource are also adequate. Supplementary texts are available in the library.

2. Rationale

Gaining a deep understanding of Computer Science is a great asset to Junior College teachers even though they are likely to be involved in teaching only relatively elementary classes. Without this understanding they will fail to communicate to their students the important aspects of the material covered in Junior College. A teacher who is only one step ahead of his students is not a good one.

This course is an ideal one for achieving the above goal. It covers many aspects of theoretical computer science. The gained theoretical knowledge is then applied to designing compilers which are sophisticated computer programs whose function is translating high level code to machine language. This course ties theory to applications in a very effective way.

3. Essence

a. The objectives of the course are:

I. The students will study the rationale for compilers. They will also learn different compiler models.

II. The students will study finite state machines. They will also apply them to the design of the lexical box of a compiler.

III. The students will study pushdown machines, context free grammars, and translation grammars. The students will apply these notions to the design of the syntax box of a compiler.

IV. The students will design a code generator for a compiler.
b. Topical Outline

I. Introduction
 A. Rationale for Compilers
 B. Models of Compilers

II. The Lexical Box.
 A. Finite State Machines
 B. Implementation of Finite State Machines
 C. The design of a lexical box.

III. The Syntax Box
 A. Pushdown Machines
 B. Context Free Grammars
 C. Translation Grammars
 D. The design of a syntax box.

IV. The Code Generator
 A. The simulation of run time.
 B. Memory layout.
 C. Table entries.

c. Two written exams and three computer projects will be used to evaluate the students. The first two computer projects are: designing a lexical box and a syntax box. The third one, which is not required of the undergraduate students, is concerned with the development of a code generator.

d. Course Evaluation: we plan to evaluate the course by means of student evaluations.

4. Consultation: Richard Smith, Educational Administration

5. Additional Information

A textbook can be chosen from the following list:

III. Barret and Couch, Compiler Construction, Theory and Practice, SRA, 1979
6. Catalog Description:

GXXXX

Compiler Design Theory (Prerequisite: GXXXXX and GXXXXX).

This course covers the following topics: Compiler models, finite state machines, the lexical box, context free grammars, translation grammars, pushdown machines, the syntax box, the code generator.
COURSE PROPOSAL

COMPILER DESIGN THEORY

1. Details

a. Course Title: Compiler Design Theory
b. Sponsor: K. Amer
c. Course Level: Graduate. Three credit hours.
d. Curricular Effect: Major requirement for the Master's Degree in Junior College Teaching (Computer Science).
e. Prerequisite: Data Structures and Programming languages.
f. One section every academic year will be offered.
g. There is an adequate number of faculty members who are well prepared to teach this course. Computer resource are also adequate. Supplementary texts are available in the library.

2. Rationale

Gaining a deep understanding of Computer Science is a great asset to Junior College teachers even though they are likely to be involved in teaching only relatively elementary classes. Without this understanding they will fail to communicate to their students the important aspects of the material covered in Junior College. A teacher who is only one step ahead of his students is not a good one.

This course is an ideal one for achieving the above goal. It covers many aspects of theoretical computer science. The gained theoretical knowledge is then applied to designing compilers which are sophisticated computer programs whose function is translating high level code to machine language. This course ties theory to applications in a very effective way.

3. Essence

a. The objectives of the course are:

I. The students will study the rationale for compilers. They will also learn different compiler models.

II. The students will study finite state machines. They will also apply them to the design of the lexical box of a compiler.

III. The students will study pushdown machines, context free grammars, and translation grammars. The students will apply these notions to the design of the syntax box of a compiler.

IV. The students will design a code generator for a compiler.
b. Topical Outline

I. Introduction
 A. Rationale for Compilers
 B. Models of Compilers

II. The Lexical box.
 A. Finite State Machines
 B. Implementation of Finite State Machines
 C. The design of a lexical box.

III. The Syntax Box
 A. Pushdown Machines
 B. Context Free Grammars
 C. Translation Grammars
 D. The design of a syntax box.

IV. The Code Generator
 A. The simulation of run time.
 B. Memory layout.
 C. Table entries.

c. Two written exams and three computer projects will be used to evaluate the students. The first two computer projects are: designing a lexical box and a syntax box. The third one, which is not required of the undergraduate students, is concerned with the development of a code generator.

d. Course Evaluation: we plan to evaluate the course by means of student evaluations.

4. Consultation: Richard Smith, Educational Administration

5. Additional Information

A textbook can be chosen from the following list:

III. Barret and Couch, Compiler Construction, Theory and Practice, SRA, 1979
6. Catalog Description:

GXXXX

Compiler Design Theory (Prerequisite: 0704.322 and 0704.204).

This course covers the following topics: Compiler models, finite state machines, the lexical box, context free grammars, translation grammars, pushdown machines, the syntax box, the code generator.