PROPOSAL TITLE: Introduction to the Elastic Stability of Structures

Sponsor(s): Eric Constans E-Mail: constans@rowan.edu Ext: 5349

DEPARTMENT: Mechanical Engineering

COLLEGE: Engineering

If Liberal Arts & Sciences CHECK: ___ History/Humanities ___ Math/Sciences ___ Social/Behavioral Sciences

___ UNDERGRADUATE ___ GRADUATE

THE ATTACHED NON-GEN-ED PROPOSAL IS BEST DESCRIBED BY THE ITEM(s) CHECKED.

X New non-gen-ed course

___ Short-term non-gen-ed course

___ Minor curricular changes (fewer than three) to:

___ Existing non-gen-ed course

___ Non-gen-ed degree requirements

___ Major

___ Minor, specialization, concentration, track, certificate program

THE FOLLOWING SIGNATURES REPRESENT APPROVAL

Department Chair: Date: 10/2/2003

Department Curriculum Chair: Date: 10/2/2003

Academic Dean: Date: 10/2/2003

UNIVERSITY CURRICULUM COMMITTEE

OPEN HEARING Date: 11/3/03 Approved X Not Approved

COLLEGE CURRICULUM CHAIR: Date: Senate Announcement/Vote: 11/10/2003

Senate Curriculum Chair Signature: Date: 11/2/2003

Comments: Library Review Form completed by Marilyn Fettke (eml 1)

EXECUTIVE VICE PRESIDENT/PROVOST Signature: Date: 11/2/2003

X Approved ___ Not Approved

REGISTRAR

Date: 2/3/04 Course Description Received & Approved ~ Hegis Taxonomy & Course 0910-454

Registrar Signature:

NOTIFICATION FORWARD

SCC Chair Academic Dean Department Chair Registrar IR CAP
VP Student Affairs Others

TM 2/16/04
CURRICULUM PROPOSAL
LIBRARY RESOURCE FORM

The purpose of this form is to provide a channel of communication between the library and faculty changing and designing new courses/programs. The information will be used to assess the resources available in the library, and to identify resources the library should acquire to support the course/program. The information will also provide rationale for institutional support for library acquisitions. This form should be completed in a coordinated effort between the course sponsor(s) and the academic department liaison librarian.

- The sponsor(s) complete parts A & D
 If assistance is required to complete parts A & D, please notify the liaison librarian.

- Forward this form to the librarian who will complete parts B, C, & E

This form must be completed and attached to the original curriculum proposal before being approved by the Senate Curriculum Committee

A. College _______ Engineering _____________ Department _______ Mechanical Engineering ______

Proposed by: _______ Eric Constans ___________ Date: _______ October 3, 2003 __________

Course Title: _______ Introduction to the Elastic Stability of Structures __________

Anticipated Date for Course/Program Offering: _______ Fall 2005 __________

B. Describe the resources available in the library to support this course/program, including reference, monographic, electronic databases, audio-visual materials, etc. A summary statement is sufficient.

Campbell Library acquires monographs in all aspects of Mechanical engineering through an approval plan that automatically supplies new titles from the major publishers in this field. Conference proceedings are also available upon request through the same plan. Numerous reference volumes will support this course. To include: Dictionaries, handbooks, standards, and encyclopedias published by McGraw Hill, Wiley, and ASME. Electronic databases that will support the course are: ASME Journals database; Science Direct which includes mechanical engineering journals titles published by Elsevier; Engineering Village which includes Compendex; General Science Full Text; and the Applied Science and Technology Index. The Library also provides faculty access to databases in the Scientific and Technology Network. Audio-visual materials have not been systematically acquired in this area, but can be purchased if needed.

C. List key periodicals available in the library to support this course/program.

International Journal of Solids and Structures
Various journals of the ASME held by the library.

D. List specific resources that should be acquired to support this course.

None

E. Librarian comments and recommendations:

Monographs, reference works, and journals holdings are adequate to support his course. Should other materials be needed, they will be purchased or acquired through document delivery services.
NEW COURSE PROPOSAL

Details

a. Course Title:

 Introduction to the Elastic Stability of Structures

b. Sponsor

 Eric Constans, Mechanical Engineering

c. Credit Hours – 3

d. Course Level: Senior Level

e. Prerequisites: Dynamics (0901.291), Solid Mechanics (0901.272)

f. Suggested Time and Scale of Implementation: To be offered every other year starting Fall 2004.

Curricular Effect

The proposed course will be offered as a senior-level elective for Mechanical and Civil Engineering students. Undergraduate mechanical engineering students are required to take four mechanical engineering electives in their senior year. This course will serve as one of these electives. Other engineering students with the required prerequisites may also enroll in this course.

The proposed course will require no additional staff, space or other resources. No library resources will be required for this course.

Rationale

Many important structures (e.g. buildings, bridges, aircraft frames) have buckling as a primary mode of failure. In fact, many design codes in engineering are based upon the buckling failure mechanism, rather than bending or compression. Because of this, it is important for structural engineers to have at least a cursory knowledge of elastic stability phenomena.
Essence of the Course

a. Objectives

This course will provide senior level Mechanical Engineering students with an overview of elastic stability in structures, and a brief introduction to dynamic stability, as applied to rotating shafts. Applications of mathematical theory to real-world structural design problems will be emphasized.

b. Topical Outline/Content

1. **Introduction**
 - Stability or instability of structures
 - Continuous deformable elastic bodies

2. **Mechanical Stability Models**
 - 1 DOF models
 - 2 DOF models
 - Snapthrough model

3. **Elastic Buckling of Columns**
 - Beam theory
 - Buckling of columns
 - Elastically supported columns
 - Critical spring stiffness

4. **Columns on elastic foundations**
 - The pinned-pinned column
 - Rayleigh-Ritz solution

5. **Buckling of rings and arches**
 - The thin circular ring
 - High circular arches under pressure
 - Shallow arches

6. **Nonconservative systems and dynamic buckling**
 - Strain energy
 - Principle of virtual work
 - Whirling of high-speed shafts
c. Evaluation of students and grading procedure

Students will be evaluated through in-class examinations, completion of problem sets, and in-class presentations.

d. Course evaluation

The success of the course in meeting course goals will be determined through use of in-class examinations, the quality of student presentations, and student evaluations.

Letters of Consultation

The proposed course involves topics of primarily a Mechanical Engineering nature. As structural stability is of interest to civil engineers, a letter from the Civil Engineering department is attached.
Catalog Description

Introduction to the Elastic Stability of Structures (Suggested HEGIS Number 0910.454)
Many important structures (e.g. buildings, bridges, aircraft frames) have buckling as a primary mode of failure. Because of this, it is important for structural engineers to have at least a cursory knowledge of elastic stability phenomena. This course will provide senior level Mechanical Engineering students with an overview of elastic stability in structures, and a brief introduction to dynamic stability, as applied to rotating shafts. Applications of mathematical theory to real-world structural design problems will be emphasized.
September 26, 2003

Eric Constans, Ph.D.
Assistant Professor
Mechanical Engineering
College of Engineering
Rowan University
Glassboro, New Jersey 08028

Dear Professor Constans:

I am writing to endorse your course proposal entitled Elastic Stability of Structures. This is an important engineering mechanics course and the topics proposed are of value to both Mechanical and Civil Engineering seniors. Civil Engineering students who want to specialize in structural engineering will especially appreciate this new course.

Sincerely,

[Signature]

Ralph Alan Dusseau, Ph.D., P.E.
DRBA Professor and Founding Chair

RAD:amd

Encl.