Molecular Biology

Faculty and Research Interests

Michael Law, PhDMichael Law, PhD

Instructor
Science Center, Room 122
856-566-6266
lawmj@rowan.edu

Education

University of Southern California, CA
PhD (Biochemistry and Molecular Biology) , 2006

Research Interests

My research is focused on understanding how transcriptional control regulates cell fate decisions. Cells that are presented with an environmental challenge must respond in a manner that is appropriate for the stimulus. Using the budding yeast Saccharomyces cerevisiae as a model system, my work focuses on post-translational histone modifications during metabolic challenge and differentiation. Yeast can undergo two forms of differentiation that are initiated by nutrient limitation, pseudohyphal growth and meiosis. To enter these differentiation pathways, temporal and spatial restrictions on gene expression exist. Histone proteins, which are responsible for packaging DNA in the nucleus, are subject to post-translational modifications such as methylation, acetylation, phosphorylation, and ubiquitylation. Different combinations of these modifications provide a “histone code” that allows an intricate and coordinated execution of gene transcription programs, regulating transcriptional activation and repression. While much is known about how the histone code acts to influence transcription, much less is known regarding how the enzymes responsible for writing and erasing the code change during differentiation. Using a combination of genetic, genomic, biochemical, molecular, and cellular approaches, my current work is aimed at understanding how cells integrate extracellular signals to histone modification writers and erasers, and how these enzymatic changes affect cell fate decision.

 

Publications

1. Law MJ, Mallory MJ, Dunbrack RL Jr, Strich R. Acetylation of the transcriptional repressor Ume6p allows efficient promoter release and timely induction of the meiotic transient transcription program in yeast. Mol Cell Biol. 2014 Feb;34(4):631-42

2.Law, M.J., Lee D. S., Lee C. S., Anglim P. P., Haworth I. S., and Laird-Offringa, I.A. 2013. The role of the C-terminal helix in the interaction of U1A protein with U1hpII RNA. Nucleic Acids Res. 2013 Aug 1;41(14):7092-100.

3. Mallory M.J.*, Law, M.J.*, Sterner D.E., Berger S.L., Strich R. 2012. Gcn5p-dependent acetylation induces degradation of the meiotic transcriptional repressor Ume6p. Mol Biol Cell. 23(9):1609-17.

4. Cooper, K.F., Krasley E. Scarnati M.S., Mallory M.J., Jin C., Law M.J., Strich R. 2012. Oxidative stress-induced nuclear to cytoplasmic relocalization is required for Not4-dependent cyclin C destruction. J Cell Sci. 125:1015-26.

5. Mallory, M. J., M. J. Law, and R. Strich. Sin3p mediates the meiotic transcription program in yeast 2010. Eukaryotic Cell . Vol. 9, No. 12: 1535-9778 (2010 December ) .

6. Law, M.J., Linde, M.E., Chambers, E.J., Oubridge, C., Katsamba, P.S., Nilsson, L., Haworth, I.S., Laird-Offringa, I.A. The role of positively charged amino acids and electrostatic interactions in the complex of U1A protein and U1 hairpin II RNA. . Nucleic Acids Res. Vol. 34: 275-285 (2006 ) .

7. Law, M.J., Rice, A.J., Lin, P., Laird-Offringa, I.A. The role of RNA structure in the interaction of U1A protein with U1hpII RNA. .. RNA . Vol. 12: 1-11 (2006 ) .

8. Law, M.J., Chambers, E.J., Katsamba, P.S., Haworth, I.S., Laird-Offringa, I.A. Kinetic analysis of the role of the tyrosine 13, phenylalanine 56, and glutamine 54 network in the U1A/U1hpII interaction. Nucleic Acids Res. Vol. 33: 2917-2928 (2005 ) .

One Medical Center Drive
Stratford, New Jersey 08084-1501
Technical contact for the web site
Privacy Statement