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Abstract
The Extendable Mobile Agent Architecture (EMAA) is a
new agent architecture specification that aids in the
development of an agent system. The architecture’s com-
ponent design that has layers of abstraction, providing a
generic system. EMAA provides a framework for autono-
mous asynchronous mobile software agents to migrate
among computing nodes in a network and exploit the
resources at those nodes. A single implementation of
EMAA can provide a foundation for several different agent
applications.

Introduction

The Extendable Mobile Agent Architecture (EMAA) is a
new agent architecture specification that aids in the
development of an agent system. EMAA uses an object-
oriented design, but deviates from the traditional message-
passing paradigm among objects that are distributed
throughout a network [1]. It provides a simple way for a
mobile agent to migrate from one computing node to
another and to use the resources at that node.  EMAA does
not impose any restriction on the behavior of the agents,
thus allowing autonomous behavior. This paper explains
this new mobile agent architecture, and the extendable
nature of its components.

One of the major benefits of a distributed computing
environment is the ability to break problems up into
smaller sub-problems and solve those sub-problems in
parallel [1]. EMAA exploits this characteristic by breaking
an agent’s high-level goal into tasks that can be executed in
parallel. Another characteristic of distributed computing
environments is that resources may be distributed among
different nodes in the network. The concept of breaking a
program up into sub-programs fits nicely with this structure
because a task that needs to exploit a resource can be
packaged into a separate, independent component.

The resources available at a particular node are
determined by the application requirements. In some
situations it is convenient to package the logic needed to
access  these  resources  into  a  distinct  component.  In the
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EMAA methodology, these service-providing components
are called servers.

EMAA is an architecture specification; its implementa-
tion is totally reusable and extendable. A single implemen-
tation of EMAA may serve as a foundation for several
different agent systems.

In this paper we introduce the concept of taskable agents
and explain its robustness. This warrants an explanation of
the components needed to support such an agent. We first
give an overview of the architecture. We then concentrate
on the various components that make up the system. We
conclude with a section that studies the interaction among
components in this distributed architecture.

The Extendable Mobile Agent Architecture

The architecture has three major components: the agents,
servers and the dock.  At the most basic level, the agents
perform the specialized, user-defined work. Agents travel
through the system via the docks. Although the dock has
many other functions, its primary purpose is to serve as a
daemon process used for sending and receiving agents
between docks at other nodes. Furthermore, nodes that
offer specialized services to agents must do so via a server.
An overall picture of a distributed computing environment
using the EMAA design is shown in Figure 1.
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Figure 1: A Wide-Area Computing Environment



Agents
The key functionality of a mobile-agent computing
paradigm is the ability to have a program execute at one
node, and then migrate to another node with its state
preserved. This program is called the agent. It is not
sufficient to only allow support for the creation and
migration of agents.  The EMAA design provides for a
more structured paradigm. We will first discuss the
structuring of an EMAA agent and how it will help the
writing of agent applications.

As any program, an agent is created to achieve certain
goals.  However, there are some basic differences in the
way EMAA views an agent and a standard program. In
many agent applications, agents are created to perform a
number of tasks to achieve various goals. These tasks may
be performed several times by many agents. The key
difference is that a standard program is viewed as achiev-
ing one goal, while EMAA views an agent as a vehicle to
carry and execute a number of these programs, perhaps at
different nodes. Programs that achieve a goal are called
tasks. The goal of the agent is to complete all of its tasks.
This defines the concept of taskable agents. Since the agent
is a mobile program, one must consider both the task as
well as where that task is to be performed. EMAA supports
the mapping of a task to a node, allocating resources for the
task to be executed. It is important to note that EMAA does
not restrict an agent to only be programmed in this manner,
but EMAA suggests that this view may simplify applica-
tion development.

The standard EMAA agent has an itinerary. The basic
concept of an itinerary has been used in other systems such
as IBM’s Aglets [8]. An EMAA itinerary is a list of all the
tasks an agent has been created to achieve. It contains a
mapping of which computing node these tasks need to be
performed on, and the program to be executed in an event
that this task failed to be performed for whatever reason
(the event handler).

Figure 2 shows an itinerary where an agent visits three
different nodes. The agent is in a state where it has
executed the first two tasks, T1 and T2. Task T1 yielded
result R1, which the agent can recall if needed. This
itinerary shows that task T2 resulted in an error. In this
case, the standard agent would have executed the event
handler E2. Furthermore, the agent is in a state where it has
yet to execute task T3.

Machine Task Event
Handler

Result Status

Host A T1 E1 R1 √
Host B T2 E2  ✖

Host C T3 E3 

Figure 2: A Mobile Agent Itinerary

In practice, there may be inter-task constraints. For
example, the tasks may need to be executed in the same
order that they appear in the itinerary. Another such
example is that a task may not be executed if any task prior
to it failed to execute. EMAA is flexible in programming

such constraints. For example, the event handler can handle
tasks that fail by removing dependent tasks from the
itinerary.

Every time an agent is created or migrates to a new
node, it starts executing from a predefined entry point. The
logic contained within this entry point is responsible for
executing the tasks of an agent. Let us consider an example
of how an agent may make use of its itinerary at its entry
point.

The program segment at the predefined entry point of
the agent may look as follows. The structuring of agents
into tasks yields a model to program configurable agents
not tied to any one specific goal. The program needed to
accomplish a task is packaged into a separate component.
These components may be carried and executed by agents.
Without a model it would not be possible to separate an
agent’s goal into smaller goals. There are a number of
advantages from splitting a goal into smaller sub-goals

Parallelism: Multiple tasks may be executed in parallel
by one agent, or by an agent delegating some of its tasks to
other agents. Furthermore, these tasks may execute in
parallel at different nodes; a single agent can start a task
component on one node, and while that task is in progress,
migrate to another node and start another task.

Configurable agents: Tasks may be assigned to agents in
various ways, as long as they do not violate any existing
constraints. This allows for agent configuration at run-time,
without having to re-program a new agent for every new
goal. As long as the new goal can be accomplished by
some combination of existing tasks, an agent can
accomplish the goal. It is important to note that an agent
may configure itself dynamically choosing to add new
tasks to itself or discarding used tasks, thus reducing its
size.

Reusable components: If two agents have slightly
different goals, it may be possible to identify some
common subtasks. The programs needed to accomplish
these tasks may be re-used if they are properly created.

Servers
In many agent applications, one of the compelling reasons
that an agent will visit a computing node is to utilize the
resources at this node. There are three important points to
be noted here. First, to conserve bandwidth we want to
migrate as little code with an agent as possible. Second, the
code or logic needed to exploit the resources at the node
will usually be the same for all agents. Finally, it is
desirable to separate the implementation of these resources
from the implementation of the agent application.

Consider an agent-based database application where the
data resources are distributed among several computing
nodes. In a heterogeneous database environment, the code
needed to query a database will not be the same at all the
nodes. In fact, the actual implementation of the databases
at these nodes may be changing. In such situations, it is
better to package the code needed to access these resources
into a separate component, that remains at the node, known
as servers. It is beneficial to have a common interface



between the agents and the servers that offer similar
services at different nodes, even though the servers may
differ in their implementation. This keeps the agent
machine-independent.

Figure 3 illustrates an agent performing a database query
at one node hosting a DB-2 database and then migrating to
another node hosting a Microsoft Access database. The
agent uses the same interface on each server to execute a
database query even though the server’s implementation is
different at the two nodes.
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Figure 3: An Agent Performing a Database Query

We can now piece the agents, tasks and servers together.
An agent executes a task at a node. The task may access
servers to exploit resources at that node to achieve a certain
goal. If the interface to the servers is the same across
various nodes, the same tasks may be used with different
resources.

Dock
Servers and agents (and their tasks) are sufficient to
develop an agent application. However there are some
necessary components required to support servers and
agents. First, a daemon process is needed at a node to
receive an agent. Second, some well-known component
that we know exists at a node that can access any other
component is needed. This well-known component is
called the dock. The EMAA model specifies the dock
structure in detail and that will be the essence of the
following discussion.

The most important features of the dock are to serve as a
daemon process and as a placeholder for other components.
However, the dock is more structured than just this. The
dock consists of the following components:
1. Communications façade
2. Agent manager
3. Server manager
4. Event Manager

Communications Façade: The communications facade is
the daemon process itself and is meant to handle all
connections to any other computing node. It manages the
transmission of agents to and from the local node.

The communications façade offers services to send and
receive an agent from a node and begin execution of the
received agent at the predefined entry point of the agent
program.

Clearly a well-known daemon process or component at a
node is needed to send and receive agents. It is a good idea
to add functionality to this same component to also send
agents, instead of the agents interacting directly with the

communications façade at the node the agent wants to
migrate to. There are two compelling reasons for this. First,
the communication software is packaged into one com-
ponent, separating it from the rest of the agent system. If a
change in the protocol for the transmission of the agents
were needed, only the communications façade will need to
be modified. This minimizes communication protocol
dependencies between components at different nodes [4].
Second, there is a more controlled mechanism for sending
and receiving agents. Such a mechanism allows for
optimization of network use in the presence of autonomous
components.

Figure 4 illustrates a situation that may occur if the
agents were independently communicating with the remote
node, without a communication façade. At time T1,
component C1 attempts to send an agent A1 to the remote
node. This process may require making a network
connection. For example, if TCP/IP were the protocol
being used, this would require setting up a socket
connection. Soon after the agent is sent, the connection is
released. At the same time, or maybe shortly after, a
second component C2 attempts to send another agent A2 to
the same node. All the work of setting up the network
connection to the node will have to be redone. Setting up
such a connection is not a trivial process and continually
re-establishing connections on low-bandwidth networks is
undesirable [11].
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Figure 4: Illustrating the Agent Migration

Now consider Figure 5 where the components request
the façade to transmit the agents for them. The connection
can be established once, and both agents can be sent over
the same network connection.
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Figure 5: Agent Migration through Façade

In fact, there are more optimizations that may be
applied. Piggybacking is a good example. If two agents are
traveling in the same direction to the same node, and the
agents only differ in the tasks that they are carrying,
EMAA can combine their itineraries and send a single



agent. These optimizations are best done in the commun-
ications façade.

Agent Manager:  When an agent is received at a node by
the communications façade, it is handed over to a
component known as the agent manager. The agent
manager is responsible for registering the agent and
initializing it for execution. In an actual implementation,
the initialization of an agent will play a key role. If an
agent is to make use of a server at a node, it will need to
obtain handles to the servers from somewhere. As we
mentioned, the dock serves as a placeholder for all
components, including servers, at a node. Therefore an
agent may need to obtain a handle to the dock before it can
start executing. These handles can be setup during
initialization. Other practical uses of an agent manager may
be agent collaboration [9] and agent validation for security
reasons [12].

Server Manager: The server manager manages the
server components at a node. The server manager provides
a controlled mechanism to start and stop a service. The
architecture specifies that an agent must obtain a handle to
any server via a request to the server manager before it can
be used.

A server manager is meant as a placeholder for any
application dependent constraints. For example, the server
manager is a good place to incorporate an economy model
[6].

Event Manager: An event is defined as an announce-
ment that some component in the system has reached an
important state that may be of interest to other components.
Many times it is unknown if and when a component will
generate an event. For this reason, agents and servers
dependent on events must have some way of “listening” for
an event that may or may not happen. To support this, an
event management scheme where a component can gener-
ate an event or wait for one is needed.

Furthermore, a mobile agent system by definition is
dynamic in the number and types of components resident at
the dock at any given time. This characteristic makes it
difficult to pre-program a component that will raise an
event to communicate directly with any other components
which may need to be notified when that event occurs.
Even if this could be done, it is more efficient to handle
events through a centralized event manager.

EMAA specifies a fairly simple event model. There is an
event manager component contained within the dock at
every computing node. Any agent or server can generate an
event and register it with the event manager. Agents and
servers can also wait for an event or be notified on an
event. There are two mechanisms whereby a component is
notified of an event: the Blocking Method and the Callback
Method.

In the blocking method, once a component requests the
event manager for notification of a particular event, the
component itself will block execution until the event
occurs. In the callback method, a component registers a
callback with the event manager. When the event occurs,

the event manager executes the callback. In both cases, the
component can handle the event in a suitable manner.

Figure 6 depicts the logical view of EMAA using UML
(Unified Modeling Language).

Dock Interaction

We have discussed the major components of EMAA. We
conclude the presentation with some higher level dis-
cussions and considerations.

Component Loading: When an agent migrates to a node,
there may be some components of the agent already
present at the destination node. It is more efficient for an
agent to migrate with only the references to its components
and use those present at the destination.

When the agent manager is ready to execute an agent, it
makes sure that all components required by the agent are
present. If any component is not found at the node, then the
agent manager can request the component loader to contact
the last node the agent came from that is known to have
that missing component. The loader contacts the
component server at the remote node and requests the
component to be transferred. Once these components are
locally available, the agent can begin execution. EMAA
ensures that all components of an agent are available at the
originating node.

Resource Servers: It is useful to have some mechanism
to advertise a node’s resources to all other nodes. This
allows every agent to be aware of the resources available
on the network. An agent can determine what resources it
can use to achieve a goal at runtime. Therefore there is the
concept of inter-node resource sharing. EMAA specifies a
resource server for this purpose.

The algorithm for a resource server is split into two
phases. At dock start up, every resource server is
responsible for announcing the node’s resources to every
other node. In response to receiving the resources of
another node, the receiving server must do two things.
First, the foreign resources must be locally registered.
Second, the local resources must be advertised to the new
node, since the new node was not running when the local
resources were announced. This guarantees that every node
and every agent will be aware of all resources at all
reachable nodes.  Resources no longer available must be
removed via another announcement.

An Application to Information Discovery

Using the EMAA design, Advanced Technology Labora-
tories has developed a mobile-agent-based information
retrieval and dissemination application. The Domain
Adaptive Integration System (DAIS) is a DARPA funded
project with the general purpose of pushing and pulling
military intelligence information across low-bandwidth,
unreliable networks [17, 7]. These networks consist of
heterogeneous sets of nodes containing numerous
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Figure 6:  Logical View of EMAA Using UML

distributed heterogeneous databases. The system needed to
be reliable enough to be used in live field exercises, and
extensible enough to be used in domains other than
military intelligence, e.g. logistics.

Development
Using EMAA we were able to quickly layout and develop
a prototype system using Sun Microsystems’ Java language
by defining three servers, six tasks, and a controller to
serve as the user-interface to the dock. Each component of
EMAA is represented as a Java class or interface. Since
many operations in DAIS involve information being
inserted into and extracted from databases, the servers and
tasks at the very least needed to collectively provide
database-querying capabilities. With that in mind we
defined the MetaData Server and the Database Server.

A MetaData Server and a Database Server must be
present at every node hosting a database. The role of the
MetaData Server is to collect schema information from all
databases at the node and distribute it throughout the local
network. This is implemented by the resource server model
defined in the EMAA specification. In this fashion, all
nodes in the sub-net1 have information about all available
databases in that sub-net and can construct queries locally,
which will be performed at remote nodes. The role of the

                                    
1 A sub-net is defined with respect to a dock as the set of nodes
that the dock is aware of.

Database Server is to provide uniform access to the
heterogeneous databases at the associated node. A
Database Server distributes its database query tasks to all
other nodes according to the resource server model.

Probably the most fundamental functionality of DAIS is
contained in the Database Query Task and the Database
Update Task.  These tasks simply execute a SQL statement
on a database.

At a higher level of abstraction is the Abstract Query
Task.  This allows a user to query on a “virtual” field that is
mapped to actual fields within any of the databases. This
leads directly to the third server defined in the DAIS
system, the Domain Server. This server distributes
specialized Domain Objects, which contains “abstract
mappings” to the nodes on the sub-net. When an abstract
query is created, the appropriate Domain Object initially
translates it into an itinerary of query tasks. This creates a
unique Domain Object containing its own unique domain
knowledge for each domain defined in the system.

In many situations a user might not be able to attain
sufficient information from the local sub-net. In practice,
there may be useful information or resources outside the
local sub-net. To accommodate this we defined the Sub-net
Discovery Task to find such information or resources. An
agent containing a Sub-net Discovery Task on its itinerary
will attempt to discover adjoining sub-nets at each node it
encounters. The agent will with its results only after
visiting each node in each sub-net reachable from the local
sub-net.



Other tasks defined in the core DAIS system are:
1. The World Wide Web Task, which allows an agent to

query the Internet for information using any of the well-
known search engines.

2. The Natural Language Query Task, which uses a
template-based parsing algorithm to create an abstract
query from natural language input.

3. The Return Task, which allows results to be returned to
not only the originating node but also any other node on
the local sub-net.

A preliminary OMG IDL (Object Management Group
Interface Definition Language) interface to DAIS has been
developed using the Java JDK 1.2 Beta 2 Java IDL [14],
adding CORBA capabilities to the system. This was easily
accomplished using the EMAA design by creating a single
server that provides access to DAIS services via a standard
IDL interface. Foreign agents, applets, etc. can com-
municate and request services from DAIS via this
interface.

Performance
The system has proven to be both easy to develop and
extremely robust, running on even 4.2Kbs wireless net-
works which lose connection frequently. EMAA allowed
the authors to easily configure agents that would be
efficient and fault tolerant in their operation. For instance,
DAIS incorporated a tool to gather network statistics into
the Communications Façade. Using this information, the
agents could travel the higher bandwidth links whenever
possible. When agents do need to traverse low-bandwidth
links, the situation may arise that the link deteriorates to a
point that makes it impossible or too inefficient for an
agent to migrate via that link. In such cases, the agent need
not abandon its attempt to migrate to that node. Instead, the
agent can be configured to migrate to a new location then
attempt a jump to the node from the new location. This
behavior continues until either the node is reached, the
agent times out, or another user-defined event occurs.

Related Work

EMAA is a mobile agent system architecture with fully
configurable and fully taskable agents. It allows full
control of agent behavior through the task concept. EMAA
agents can be highly specialized entities or they can simply
be generic shells to be populated with specialized tasks.
With its component design, EMAA agents are fully
removed from the tasks that they execute. In a real-world
network, it cannot be assumed that all possible tasks will
be defined at agent creation. In fact, resource nodes that
emerge at arbitrary times during an agent system’s life
span will likely have new and unique tasks. In EMAA,
these emerging tasks are distributed to the individual docks
for use by any agent. Other agent systems such as
Mitsubishi Electric’s Concordia [10] and IBM’s Aglets [8]
accomplish an agent’s goals by executing conditionals
contained within the agent body. However, unique tasks

emerging during the system’s run-time cannot, in fact, be
adopted by these agents without actually modifying the
agent itself. EMAA offers a more object-oriented
approach.

Collaboration among agents is an extensive area of study
in mobile-agent research [15, 9]. The EMAA component
model directly lends itself for any collaborative scheme to
be incorporated with its implementation. EMAA has been
augmented with an agent-collaboration tool known as the
ATL Postmaster [9].

It is also worth mentioning that there are languages
dedicated to mobile computing which are suitable for
cross-platform use, such as AgentTcl [5]. Such cross-plat-
form languages allow for a truly heterogeneous computing
environment.

The advantages of component-based mobile-agent para-
digms have been stressed in [2]. The paper discusses a
concept, called code-on-demand, that is similar in some
respects to the component server in the EMAA archi-
tecture.

Future Work

Further work is being done in the following areas:
Security:  We are currently considering various

techniques to augment the architecture with security
features. The agent manager is a good place to incorporate
the validation and authentication of agents. Other security
issues are related to security concerns in any distributed
application, such as encryption of transmitted agents. A
number of issues in mobile agent security have been
addressed in [12, 3].

Control: In a practical implementation of EMAA, there
will be issues regarding the permission of resource use by
an agent. An agent may be able to access some subset of
the resources at a node and these constraints can be
programmed into the agent and server managers.

Mobile Nodes (Mobile IP):  While mobile programs add
a great deal of flexibility and enhancements to distributed
applications, mobile computing environments will involve
mobile computing nodes and users themselves in addition
to mobile programs. Extensive work has been done in the
study of network protocols that support node mobility,
such as Mobile IP [13, 16]. We are currently experimenting
with adding Mobile IP support to the Communications
Façade.

Conclusions

The taskable concept of the EMAA agents is a very power-
ful programming paradigm in the mobile computing
environment. The structuring of the system into servers and
tasks makes EMAA a truly object-oriented agent system.
Furthermore, task components empower an agent to
achieve a goal that it has not been specifically programmed
to, making them fully configurable.



As shown, the announcement of resources is done
through the resource server. Such announcements are
crucial when viewing the interaction among nodes.
Typically, these capabilities become important when the
EMAA implementation is used over a wide area network,
involving many nodes, with many independent groups
contributing to the resources of the entire network. EMAA
makes it possible to program such highly distributed
applications by the concept of sharing resources through
the distribution of task components to access these
resources.

Another major advantage of EMAA is the concept of the
communications façade. Without this component, admin-
istration of network use becomes increasingly difficult as
the number of components in the system rises. This
becomes a major factor in limited bandwidth networks. As
long as mobile computing nodes have to rely on low
bandwidth communication links, agent-based applications
will have to deal with network use and optimization in
clever ways.

We have successfully implemented EMAA in the Java
language and applied the architecture to various agent
applications.  Our implementation of EMAA demonstrated
its suitability as an architecture for rapid prototyping of
mobile agent systems.
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