USING THE FORCE: HOW STAR WARS CAN HELP YOU

TEACH RECURSION

Jennifer S Kay
Department of Computer Science
Rowan University
201 Mullica Hill Road
Glassboro, NJ 08028-1701
(856) 256-4593
kay@rowan.edu

ABSTRACT

Most studentsinaCS1 or CS2 classfind the concept of recursion unnatural and
difficult. This paper presents a unique approach to the task. Students are taught a
method of writing recursive functionsthat is more algorithmic than the traditiona
approach. By breaking the writing of arecursive function into a sequence of sub-
tasks, problems do not seem quite asintimidating. The approach incorporatesa
concept from aseriesof mgor motion picturesthat makesit moderately entertaining
for the students, while helping them with the process.

In addition to describing thisapproach to writing recursive programs, this paper dso
suggests a sequence of examples that build upon each other to help students
practice using thismethod. These examplesinclude some of the* classic” recursion
examplesfound intoday’ stextbooks, aswell as some non-traditiona examplesthat
have proven successful in the classroom.

1. INTRODUCTION

TeachingrecursoninaCSl or CS2 classcan beared chalenge. For most studentsthis
isasubject that does not seem natura or intuitive. Thetraditional methods of using aseries of
(often“classc’) examplesarenot dwayssuccessful. Studentsmay fed moderately comfortable
with onefunction (e.g. apower function), and yet be unableto solve what seemslikeavery
similar problem (e.g. factorial).

This paper presentsaway to introduce studentsto recursion using afour-step approach:

Present the students with asingle “classic” example of recursion.

JCSC 15, 5 (May 2000)
© 2000 by the Consortium for Computing in Small Colleges 277

JCSC 15, 5 (May 2000)

Teach the studentsto write arecursive function using a specific sequence of rulesthat
must aways be followed. Begin with very smple examples and graduate dowly to
the classics.

Oncethey are comfortable with following the rulesto write recursive functions, go through
one of the simple examples to demonstrate how recursion works.

Present the studentswith onefinal “classic” recursion problem. Have the students solve
the problem, and then demonstrate how their solution works.

Thekey to the success of this approach, aswell asits uniqueness, isstep 2. By presenting
the students with a specific sequence of stepsto follow when writing arecursive function, their
discomfort about the use of recurson isreduced. In addition, the sequence of smple examples
presented below seems to be a particularly effective, and pain-free, route to follow. The
examples presented inthispaper arein C++, but are appropriate to most other languages used
for CS1 and CS2.

2. CURRENT TEXTBOOK “CLASSICS’

Having made the claim that the traditiona approach isto use “the classics,” it isworth
taking sometime to review what is currently being presented in our textbooks.

A survey of severa C++ textbooks[1] [2] [3] [4] [5] [6] will convince most peoplethat
theclasscsaredtill invogue. The exact definition of aclassiciselusive, but thefact that these
should dl beingtantly recognizable given only abrief title ssems sufficient to argue thet these are
indeed classics.

The following examples were described in the text (not exercises) of at least two
textbooks:

Factorial [3] [4] [6]
Power [1] [5] [6]
Binary Search [1] [6]
Fibonacci [4] [6]
Towers of Hanoi [2] [4]

Severa of the examples that appeared only in a single textbook are still “classics’

Eight Queens [4]

Palindrome Checker [6]

Quicksort [1]

In addition several textbooks presented quite advanced examples which require more
fuller explanations:

Look ahead in game trees [4]
Fractals and Mazes [5]

Findly, one textbook presented a unique example which ismoderately smple and worth
mentioning:

278

CCSC: Northeastern Conference

Printing out the digits of an integer verticaly [5]

3. TEACHING RECURSION USING THE FOUR-STEP APPROACH

The four-step approach that is presented below has been used in CS1 and CS2
Undergraduate classes, aswell asin aMasters-Level “bridge” course designed as a quick
introduction for students who wish to pursue Masters degreesin Computer Science but have
an insufficient undergraduate background. It works well, and the addition of the Star Wars
theme even helps to motivate (albeit briefly) the night owlsin 9 am. classes.

3.1 Step 1: Start with an Obvious Classic

Beginyour lecturein thetraditiona way. Review the definition of factorid, and then ask
the students, “ suppose | wanted to compute the factorid of 27, and | dready knew the factorid
of 26, would that help me?’ “ Suppose | wanted to compute the factorial of 54, but knew the
factorial of 53, would that help me?’

Onceyour studentsare comfortablewith thinking recursively about factoria, present them
with the standard code for factorial:

int fact (int num)

{
if (num==1)
return (1);
else
return (num * fact(num-1));
}

Ask the students, “ Pretend for aminute that afunction could call itself, and so thiscode
islega andwould compile. (I know it ssemsweird, but just bear with me) If you assume that
afunction can cal itself, do you believe that this would work?’

Most sudentsarewilling to agree, given the condition that they are not required to believe
that the techniqueworks. It can beinteresting at this point to have the classvote asto whether
they believe the code would actually compile.

Fndly, tell thestudentsthet it redly doeswork, givethem asmple definition of arecursve
function (e.g. “afunctionthat calsitsalf”) and give them aroadmap of how youwill proceed for
the rest of thistopic:

1. “Wewill beginby learning somerulesthat will enable usto write recursve functions
that work. Aswewritethese, your jobisto smply follow therules. If you follow the
rules, you will write recursive programs that will work. Don’t worry about
understanding why or how it works, just learn how to write these functions.”

279

JCSC 15, 5 (May 2000)

2. “Wearegoingtogtart out by writing somevery smplefunctions. Functionsthat you
could write much more easily without recursion. But try and forget about that, and
just follow the rulesto see how you could write that function recursively.”

3. “Onceyouget used towriting recursivefunctionsusing theserules, we' |l takealook
at how this actually works on the computer.

3.2 Step 2: The Rulesfor Writing Recur sive Functions (Using Star Wars)

If you choose to use the Star Wars analogy, now isthe timeto ensurethat all of your
students have seen at least one of the Star Warsmovies, or are at least familiar with the concept
of “TheForce’. Todatel have only had one student who had never seen any of the movies,
so explanations are typically unnecessary.

Hereisasummary of thekey points. “In Star Wars, the heroes often refer to amagical
power cdled ‘ The Force.” The Force can help you achieve monumenta tasks, but only if you
believeinit, area onewithit, and allow it to help you. If youresist, it will not help you. You
must simply believe, and go with the flow.”

Now proceed with writing the ruleson the board (and even better, supplementing witha
handout) asfollows:

1. Specify the prototype for your function.

2. Writeacareful comment, including pre-conditions, post-conditions, and any value
returned by the function.

Code the base case (i.e. the simplest case) in (one or more) if statements.

Think of aconcrete example aswell asasecond examplethat isabit closer to the
base case than your concrete example.

5. USETHEFORCE: believethat your comment istruefor the second exampleand
specify what the function will do for the second example.

Given your answer to step 5, how would you solve the problem for step 4

Codetherecursve stepin an e se statement. USE THE FORCE. Bdlievethat your
comment istruefor any case closer to the base case. Writethe genera way to solve
the problem.

For thefollowing examples, you providethe classwith an ora description of the problem,
and have them follow the steps to the solution.

3.2.1 Example 1: count_down

“Inour first example, wewant to write afunction that takesapositiveinteger, and prints
out al of the numbers between that integer and 1, separated by spaces. For example, if num
is6 our functionwill print: 654 32 1. Of course, it would be much easer to write this without
recursion, how would we do that? Now let’ stry and do it recursively.”

280

CCSC: Northeastern Conference

In the example below, the steps are specified as an aid to the reader. When
presenting thisto students, writethe codeasasingle unit, and read thestepsout loud
asyou go. Step 4 should be done off to the side so that it does not interfere with the
function.

Soecify the prototype:
void count_down (int num)

Wkite a careful comment:
[* count_down printsthe integers between num and 1, separ ated
by spaces.

Preconditions. num >0
Postconditions: the integer s between num and 1 will be
printed in order separated by spaces. E.g.
count_down(6) will print654321
Returns: void
*/

Code the base case:
{
if (num==1)
cout << num;

Think of a concrete example: (8)
What exampleis closer to the base case? (7)

Use the Force: Believe the comment istrue. If | call count_down(7) what happens?
(Itprints7654321)

Use the Force: how can | solve count_down on 8 using count_down on 7?
(Print the 8, then print a space, then run count_down(7)).

Codetherecursive step (keeping in mind our concrete example from steps 4, 5, and
6).
else

{

cout << num<<"";
count_down (num —1);

281

JCSC 15, 5 (May 2000)

Themost common problem that students have with thisisremembering the spacein steps
4 and 6. When working on 4 on the board, be sure to write the 8 and 7 without a space if the
students do not explicitly tell you to writeit,i.e. 8765432 1.

3.2.2 Example 2: count_down_up

“Now let’ swrite afunction that takes apositive integer, and prints out al of the numbers
between that integer and 1 and then back up to num, separated by spaces. For example, if num
is6 our functionwill print: 65432123456. Again, it would be much easier to writethis
without recursion, how would we do that? Now let’ stry and do it recursively.”

Soecify the prototype:
void count_down_up (int num)

Write a careful comment:
[* count_down_up printstheinteger sbetween num and 1, and back up to num
separ ated by spaces.

Preconditions: num >0
Postconditions: the integer s between num and 1 and then
back up to num will be printed in order separated by
spaces. E.g. count_down_up(6) will print
65432123456
Returns: void
*/

Code the base case:

{
if (num==1)
cout << num;

Think of a concrete example: (4)
What exampleis closer to the base case? (3)

Use the Force: Believe the comment is true. If | call count_down_up(3) what
happens? (It prints3212 3)

Use the Force: how can | solve count_down_up on 4 using count_down_up on 3?
(Print the 4, then print aspace, then run count_down_up(3), then print aspace, then
print the 4).

Codetherecursive step (keeping in mind our concrete example from steps 4, 5, and
6).

282

CCSC: Northeastern Conference

else
{
cout << num<<"";
count_down_up (num —1);
cout <<" " << num,;
}
}

count_down_up isapaticularly interesting example because the codeis S0 Smilar to that
of count_down. It’sworth pointing out thisfact, and explaining that sometimes the dightest
mistakeinwriting arecursivefunction can produce unexpected results. It isworth mentioning
that when tarting to userecursion, it is often easier to start writing a program from scratch than
to try and debug a bad function.

3.2.3 Example 3: count_up_to 100

At thispoint thereisthe concern that students may equate“ closer to the base case” with
“smaller.” It'stimeto clear up that misconception.

“Now let’ swrite afunction that takes an integer that islessthan or equal to 100, and
printsout al of the numbers between that integer and 100, separated by spaces. For example,
if numis 96 our function will print: 96 97 98 99 100. Again, it would be much easier to write
this without recursion, how would we do that? Now let’stry and do it recursively.”

Soecify the prototype:
void count_up_to_100 (int num)

Write a careful comment:
/* count_up_to 100 prints the integers between num and 100, separated by
spaces.

Preconditions. num <= 100
Postconditions. the integers between num and 100 will be printed in order
separ ated by spaces. E.g. count_up_to_100(96) will print
96 97 98 99 100
Returns: void
*/
Code the base case:
{
if (num == 100)
cout << num;

Think of a concrete example: (94)

283

JCSC 15, 5 (May 2000)

What example is closer to the base case? (95)

Use the Force: Believe the comment is true. If | call count_up_to_100(95) what
happens? (It prints 95 96 97 98 99 100)

Use the Force: how can | solve count_up_to 100 on 94 using count_up_to_100 on
957
(Print the 94, then print a space, then run count_up_to_100(95)

Code the recursive step (keeping in mind our concrete example from steps 4, 5, and

6).
else
{
cout << num<<"";
count_up_to 100 (num + 1);
}
}

3.2.4 Classic 1: Power

All of the functions we have written so far do not return avaue. The power functionisa
useful oneto demongtrate returning avalue. Follow the same procedure to create arecursive
function with the following prototype and description:

double power (double base, int exponent)
[* precondition: exponent >0
postcondition: none
returns. baseraised to the exponent power
*/

3.2.5Classic 2: Fibonacci

Thisisuseful to demongtrate that arecursive function may have more than one base case
(of course, Fibonacci can bewritten with asingleif statement, but forcethemtoinitialy write
it with two, and then simplify to oneif you wish).

int fib (int num)
[* precondition: num >0
postcondition: none
returns: the num’th fibonacci number, wherethe first
and second fibonacci numbersare 1, and after that
then’th fibonacci number isthe n-1'th fibonacci
number plusthen-2'th fibonacci number
*/

284

CCSC: Northeastern Conference

3.3 Step 3: Demonstrating How Recursion Works

At thispoint it istime to demonstrate how recursive functions actually work, using the
count_down_up example. Different text books recommend different gpproachesto this. My
gpproach isto augment my code with line numbers (or even better, |etters) and step through the
levelsof recurson, crossing out aletter when | have completed that step. For example, suppose
the code is written as follows:

void count_down_up (int num)

{
a) if (num==1)
b) cout << num;
C) else
{
d) cout << num<<"";
€) count_down_up (num —1);
f) cout <<" " << num;
}
}

A snapshot of the blackboard of the run of count_down_up just after | have printed the
number 1 would look something like Figure 1:

285

JCSC 15, 5 (May 2000)

court, dowr ug

MEIM— Rbhdef Y
count, down, up

T e
count,_dowm up

ml —— ko def

Figure 1. Blackboard Snapshot after printing the number 1

After printing a 2 for the second time, the blackboard would look like Figure 2:

oot down up
T Imi— ”
3 gbblef e 2515
cont down up
S e

Figure 2. Blackboard Snapshot after printing the number 2

286

CCSC: Northeastern Conference

3.4 Step 4: Present One Final Classic

If you're feding confident try Towers of Hanoi. This works best when you use the
following prototype (from [4]) with amodification of their comment

void move (int count, int start, int finish, int temp)
/~k
precondition: Thereareat least count disks on the tower
start. Thetop disk (if any) on each of towerstemp and
finish islarger than any of the top count diskson
tower start

postcondition: This printsthedirectionsfor playing the
towers of Hanoi, asa series of lines:
move a disk from peg xxx to peg yyy
for a game starting with count disks on start
and ending with those disks on finish
*/

Thisproblemisawaysvery difficult. Encourage the studentsto follow the steps, and be
sure that their postcondition specifies that a sequence of directionswill be printed. If the
students are stuck, suggest that they havelost their faith in The Force and must believethat they
candoiit.

4. CONCLUSIONS

Recursion canfedl very unnatural to studentsasthey first learn the subject. The above
materid typicaly takesat least aweek of classtime, but theresulting understandingisworth the
effort. Use of this approach does not guarantee that students leave the class feeling that
recursion isthe most naturd thing on earth. But it does provide them with a solid foundation and
a set of techniques that they can use to approach recursive problems.

5. REFERENCES

Berman, A. Michadl, Data Structures via C++: Objects by Evolution, Oxford University Press,
1996.

Budd, Timothy, Data Structuresin C++ using the Standard Template L ibrary, Addison Wed ey,
1998.

Horstmann, Cay, Computing Concepts with C++ Essentials, Wiley, 1997.

Kruse, Robert L., and Ryba, Alexander J., Data Structures and Program Design in C++,
Prentice Hall, 1999.

287

JCSC 15, 5 (May 2000)

Main, Michad, and Savitch, Walter, Data Structures and Other Objects Using C++, Addison
Wesley, 1998.

Nyhoff, Larry, C++: An Introduction to Data Structures, Prentice Hall, 1999.

288

