Cell Biology

Faculty and Research Interests

Michael Anikin, PhDMichael Anikin, PhD

Assistant Professor
Science Center B207 (Lab)
856-566-6326
anikinmi@rowan.edu

Education

Moscow State Academy of Fine Chemical Technology,
PhD, 1988.

 

Research Interests

Research in the laboratory focuses on mechanisms of transcription as the first stage of gene expression. We study structure-function relationships in the central enzyme involved in transcription, DNA-dependent RNA polymerase. Our model transcription system is based on the single-subunit RNA polymerase from yeast mitochondria. We assemble active transcription complexes using highly-purified recombinant protein components and synthetic oligonucleotides and employ a combination of biochemical and genetic techniques to elucidate the structural elements of the enzyme that are functionally important during early steps of promoter recognition, transcription initiation and elongation.

 

Recent Publications

(Updated September 2014)

  1. Molodtsov V, Anikin M, McAllister WT. The Presence of an RNA:DNA Hybrid That Is Prone to Slippage Promotes Termination by T7 RNA Polymerase. J Mol Biol, 426(18): 3095-107, September 2014.
  2. Morozov YI, Agaronyan K, Cheung AC, Anikin M, Cramer P, Temiakov D. A novel intermediate in transcription initiation by human mitochondrial RNA polymerase. Nucleic Acids Res, 42(6): 3884-93, April 2014.
  3. Litonin D, Sologub M, Shi Y, Savkina M, Anikin M, Falkenberg M, Gustafsson CM, Temiakov D. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem, 11; 285(24): 18129-33, June 2010.
  4. Multiple functions of yeast mitochondrial transcription factor Mtf1p during initiation. Savkina M, Temiakov D, McAllister WT, Anikin M. J Biol Chem, 5; 285(6): 3957-64, Feb 2010.
  5. TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase. Sologub M, Litonin D, Anikin M, Mustaev A, Temiakov D. Cell, 25; 139(5): 934-44, Nov 2009.
  6. Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification. Markov DA, Savkina M, Anikin M, Del Campo M, Ecker K, Lambowitz AM, De Gnore JP, McAllister WT. Yeast, 26(8): 423-40, Aug 2009.
  7. Maintenance of RNA-DNA hybrid length in bacterial RNA polymerases. Kent T, Kashkina E, Anikin M, Temiakov D. J Biol Chem,15; 284(20): 13497-504, May 2009.
  8. Phosphorylation of connexin43 induced by Src: regulation of gap junctional communication between transformed cells. Pahujaa M, Anikin M, Goldberg GS. Exp Cell Res,10; 313(20): 4083-90, Dec 2007.
  9. Determination of the melting site of the DNA duplex in the active center of bacterial RNA-polymerase by fluorescence quenching technique. Kashkina EA, Anikin MV, McAllister WT, Kochetkov N, Temyakov DE. Dokl Biochem Biophys, 416: 285-9, Sept 2007.
  10. Bandwar RP, Ma N, Emanuel SA, Anikin M, Vassylyev DG, Patel SS, McAllister WT. The transition to an elongation complex by T7 RNA polymerase is a multistep process. J Biol Chem, 3;282(31):22879-86, Aug 2007.
  11. Kashkina E, Anikin M, Brueckner F, Lehmann E, Kochetkov SN, McAllister WT, Cramer P, Temiakov D. Multisubunit RNA polymerases melt only a single DNA base pair downstream of the active site.  J Biol Chem, 282(30):21578-82, May 2007.
  12. Pomerantz RT, Temiakov D, Anikin M, Vassylyev DG, McAllister WT.  A mechanism of nucleotide misincorporation during transcription due to template-strand misalignment.  Mol Cell, 20; 24(2):245-55, Oct 2006.
  13. Kashkina E, Anikin M, Brueckner F, Pomerantz RT, McAllister WT, Cramer P, Temiakov D.  Template misalignment in multisubunit RNA polymerases and transcription fidelity. Mol Cell, 24(2):257-66, Oct 2006.
  14. Kashkina E, Anikin M, Tahirov TH, Kochetkov SN, Vassylyev DG, Temiakov D.  Elongation complexes of Thermus thermophilus RNA polymerase that possess distinct translocation conformations. Nucleic Acids Res, 34(14); 4036-45, 2006.
  15. K. Ma, D. Temiakov, M. Anikin, W.T. McAllister.  Probing conformational changes in T7 RNA polymerase during initiation and termination by using engineered disulfide linkages.  Proc Natl Acad Sci USA, 102(49); 17612-7, 2005.
  16. R.T. Pomerantz, R. Ramjit, Z. Gueroui, C. Place, M. Anikin, S. Leuba, J. Zlatanova, W.T. McAllister.  A tightly regulated molecular motor based upon T7 RNA polymerase.  Nano Letters, 5(9); 1698-703, 2005.
  17. D. Temiakov, V. Patlan, M. Anikin, W.T. McAllister, S. Yokoyama, D.G. Vassylyev.  Structural basis or substrate selection by T7 RNA polymerase.  Cell, 116(3); 381-91, 2004.
  18. D. Temiakov, M. Anikin, K. Ma, M. Jiang, W.T. McAllister.  Probing the organization of transcription complexes using photoreactive 4-thio-substituted analogs of uracil and thymidine.  Methods Enzymol, 371; 133-43, 2003.
  19. D. Temiakov, T. Tahirov, M. Anikin, W.T. McAllister, D.G. Vassylyev, S. Yokoyama.  Crystallization and preliminary crystallographic analysis of T7 RNA polymerase elongation complex.  Acta Crystallogr D Biol Crystallogr, 59(1); 185-7, 2003.
  20. T.H. Tahirov, D. Temiakov, M. Anikin, V. Patlan, W.T. McAllister, D.G.Vassylyev, S.Yokoyama.  Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature, 420(6911); 43-50, 2002.
  21. D. Temiakov, M. Anikin, W.T. McAllister.  Characterization of T7 RNA polymerase transcription complexes assembled on nucleic acid scaffolds.  J Biol Chem, 277, 2002.
  22. K. Ma, D. Temiakov, M. Jiang, M. Anikin, W.T. McAllister.  Major conformational changes occur during the transition from an initiation complex to an elongation complex by T7 RNA polymerase. J Biol Chem, 277 (45); 43206-15, 2002.
  23. D. Imburgio, M. Anikin, W.T. McAllister.  Effects of substitutions in a conserved DX2GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase. J Mol Biol, 319(1); 37-51, 2002.

One Medical Center Drive
Stratford, New Jersey 08084-1501
Technical contact for the web site
Privacy Statement