Cell Biology

Faculty and Research Interests

Venkat Venkataraman, PhD

Assistant Professor
Science Center 205


Indian Institute of Science,
PhD, 1991.


Research Interests

My major area of interest is cell communication – how cells receive signals and decipher them to respond in an appropriate fashion.  I am particularly interested in communication in neuronal cells – both central and peripheral.  My current programs, based on this work, include:

  1. Signaling in neurodegenerative diseases:  I am using Alzheimer’s disease as a model to understand the signaling events that occur during neuronal degeneration. 
  2. Signaling in biological clocks:  I am studying the signaling molecules in defining the circadian rhythm in mammals using rat and mouse as model systems. 
  3. Signaling in Fascia:  I am studying the role of calcium signaling in the fascia .
  4. Retinal signaling:  I am investigating the role of membrane guanylate cyclases and NCS proteins in non-photoreceptor signaling in the retina


Recent Publications

(Updated January 2017)

  1. Wu H, Rodriguez AR, Spur BW, Venkataraman V. An Acute Retinal Model for Evaluating Blood Retinal Barrier Breach and Potential Drugs for Treatment. J Vis Exp, 115, September 2016.
  2. Krishnan A, Viviano J, Morozov Y, Venkataraman V. Single-column purification of the tag-free, recombinant form of the neuronal calcium sensor protein, hippocalcin expressed in Escherichia coli. Protein Expr Purif, 123: 35-41, July 2016.
  3. Viviano J, Krishnan A, Wu H, Venkataraman V. Data on the calcium-induced mobility shift of myristoylated and non-myristoylated forms of neurocalcin delta. Data Brief, 7: 630-3, June 2016.
  4. Krishnan A, Viviano J, Morozov Y, Venkataraman V. Data on the identity and myristoylation state of recombinant, purified hippocalcin. Data Brief, 8: 78-81, May 2016.
  5. Viviano J, Krishnan A, Scully J, Wu H, Venkataraman V. Datasets depicting mobility retardation of NCS proteins observed upon incubation with calcium, but not with magnesium, barium or strontium. Data Brief, 7: 1606-8, April 2016.
  6. Wu H, Brown EV, Acharya NK, Appelt DM, Marks A, Nagele RG, Venkataraman V. Age-dependent increase of blood-brain barrier permeability and neuron-binding autoantibodies in S100B knockout mice. Brain Res, 1637: 154-67, April 2016.
  7. Viviano J, Krishnan A, Wu H, Venkataraman V. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins. Anal Biochem, 494: 93-100, February 2016.
  8. Viviano J, Wu H, Krishnan A, Ramanujachary K, Venkataraman V. Data on final calcium concentration in native gel reagents determined accurately through inductively coupled plasma measurements. Data Brief, 6: 820-2, January 2016.
  9. Sedeyn JC, Wu H, Hobbs RD, Levin EC, Nagele RG, Venkataraman V. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures. Biomed Res Int, 2015: 937148, 1-12, November 2015.
  10. Wen XH, Duda T, Pertzev A, Venkataraman V, Makino CL, Sharma RK. S100B Serves as a Ca2+ Sensor for ROS-GC1 Guanylate Cyclase in Cones but not in Rods of the Murine Retina. Cell Physiol Biochem, 29(3-4): 417-30, Feb 2012.
  11. Nagele RG, Clifford PM, Siu G, Levin EC, Acharya NK, Han M, Kosciuk MC, Venkataraman V, Zavareh S, Zarrabi S, Kinsler K, Thaker NG, Nagele EP, Dash J, Wang HY, Levitas A.  Brain-reactive autoantibodies prevalent in human sera increase intraneuronal amyloid-β (1-42) depositionJ Alzheimers Dis, 25(4): 605-22, Mar 2011.
  12. Levin EC, Acharya NK, Han M, Zavareh SB, Sedeyn JC, Venkataraman V, Nagele RG. Brain-reactive autoantibodies are nearly ubiquitous in human sera and may be linked to pathology in the context of blood-brain barrier breakdown. Brain Res, 23(1345): 221-32, Jul 2010.
  13. Gilliss AC, Swanson RL 2nd, Janora D, Venkataraman V. Use of osteopathic manipulative treatment to manage compensated trendelenburg gait caused by sacroiliac somatic dysfunction. J Am Osteopath Assoc, 110(2):81-6, Feb 2010.
  14. Ragunath C, Manuel SG, Venkataraman V, Sait HB, Kasinathan C, Ramasubbu N. Probing the role of aromatic residues at the secondary saccharide-binding sites of human salivary alpha-amylase in substrate hydrolysis and bacterial binding. J Mol Biol, 384(5): 1232-48, Dec 2008.
  15. Clifford PM, Siu G, Kosciuk M, Levin EC, Venkataraman V, D'Andrea MR, Nagele RG. Alpha7 nicotinic acetylcholine receptor expression by vascular smooth muscle cells facilitates the deposition of Abeta peptides and promotes cerebrovascular amyloid angiopathy. Brain Res, 1234: 158-71, Oct 2008.
  16. Venkataraman V, Duda T, Ravichandran S, Sharma RK. Neurocalcin delta Modulation of ROS-GC1, a New Model of Ca2+ Signaling. Biochemistry, 47 (25): 6590–601, Jun 2008.
  17. Clifford PM, Zarrabi S, Siu G, Kinsler KJ, Kosciuk MC, Venkataraman V, D'Andrea MR, Dinsmore S, Nagele RG. Abeta peptides can enter the brain through a defective blood-brain barrier and bind selectively to neurons. Brain Res, 1 142: 223-36, Apr 2007.
  18. Duda T, Venkataraman V, Ravichandran S, Sharma RK. ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Peptides, 26: 969-84, Jun 2005.
  19. Duda T, Fik-Rymarkiewicz E, Venkataraman V, Krishnan R, Sharma RK. The Calcium-Sensor Guanylate Cyclase Activating Protein Type 2 Specific Site in Rod Outer Segment Membrane Guanylate Cyclase Type 1. Biochemistry. 44(19): 7336-45, May 2005.
  20. Duda T, Fik-Rymarkiewicz E, Venkataraman V, Krishnan R, Koch KW, Sharma RK. Calcium-modulated ciliary membrane guanylate cyclase transduction machinery: constitution and operational principles. Mol Cell Biochem, 267(1-2): 107-22, Dec 2004.
  21. Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC, Wegiel J. Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiol Aging, 25(5): 663-74, May 2004 .
  22. Krishnan A, Venkataraman V, Fik-Rymarkiewicz E, Duda T, Sharma RK. Structural, biochemical, and functional characterization of the calcium sensor neurocalcin delta in the inner retinal neurons and its linkage with the rod outer segment membrane guanylate cyclase transduction system. Biochemistry, 43(10): 2708-23, Mar 2004.
  23. Venkataraman V, Duda T, Vardi N, Koch KW, Sharma RK. Calcium-modulated guanylate cyclase transduction machinery in the photoreceptor--bipolar synaptic region. Biochemistry, 42(19): 5640-8, May 2003.
  24. Nagele RG, D'Andrea MR, Lee H, Venkataraman V, Wang HY. Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res, 971(2): 197-209, May 2003.
  25. Duda T, Koch KW, Venkataraman V, Lange C, Beyermann M, Sharma RK. Ca(2+) sensor S100beta-modulated sites of membrane guanylate cyclase in the photoreceptor-bipolar synapse. EMBO J, 21(11): 2547-56, Jun 2002.
  26. Venkataraman V, Nagele RG. Calcium-sensitive ROS-GC1 signaling outside of photoreceptors: a common theme. Mol Cell Biochem, 230(1-2): 117-24, Jan 2002. Review.
  27. Duda T, Jankowska A, Venkataraman V, Nagele RG, Sharma RK.A novel calcium-regulated membrane guanylate cyclase transduction system in the olfactory neuroepithelium. Biochemistry, 40(40): 12067-77, Oct 2001.
  28. Duda T, Venkataraman V, Krishnan A, Nagele RG, Sharma RK. Negatively calcium-modulated membrane guanylate cyclase signaling system in the rat olfactory bulb. Biochemistry, 40(15): 4654-62, Apr 2001.
  29. Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Three dimensional atomic model and experimental validation for the ATP-Regulated Module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem, 217(1-2): 165-72, Jan 2001.

One Medical Center Drive
Stratford, New Jersey 08084-1501
Technical contact for the web site
Privacy Statement